Computer Architecture
Condensed from Proc.
8th Int. Conf.

News, vol. 27, no.
3rd Workshop on Interaction
Architectural Support for

1, March 1999,

pp. 31-34.
Between Compilers
Programming Languages and Operating

and Computer Architecture (INTERACT-3) at the
Systems (ASPLOS-VIII), Oct. 1998.

The Limits of Instruction Level Parallelism in SPEC95 Applications

Matthew A. Postiff, David A. Greene, Gary S. Tyson and Trevor N. Mudge
Advanced Computer Architecture Lab
The University of Michigan
{postiffm,greened,tyson,tnm } @eecs.umich.edu

Abstract

This paper examines the limits to instruction level
parallelism that can be found in programs, in particu-
lar the SPEC95 benchmark suite. Apart from using a
more recent version of the SPEC benchmark suite, it
differs from earlier studies in removing non-essential
true dependencies that occur as a result of the com-
piler employing a stack for subroutine linkage. This
is a subtle limitation to parallelism that is not readily
evident as it appears as a true dependency on the stack
pointer. Other methods can be used that do not em-
ploy a stack to remove this dependency. In this paper
we show that its removal exposes far more parallelism
than has been seen previously. We refer to this type
of parallelism as “parallelism at a distance” because it
requires impossibly large instruction windows for de-
tection. We conclude with two observations: 1) that a
single instruction window characteristic of superscalar
machines is inadequate for detecting parallelism at a
distance; and 2) in order to take advantage of this
parallelism the compiler must be involved, or separate
threads must be explicitly programmed.

1 Introduction

There are three principal types of dependencies that
limit parallelism in programs: resource dependencies,
control dependencies, and data dependencies. Re-
source dependencies include such things as the number
of function units, size of caches, degree of pipelining,
and the instruction window size. They are the most
difficult class of dependencies to characterize, because
limits associated with them are subject to the rapid
improvement that we have come to expect with semi-
conductor technology.

Control dependencies arise from the need to evaluate
conditional branches and computed jumps before exe-
cution can proceed. The usual approach for reducing
this dependency is to predict the outcome of branches.
In past studies the effects of different success rates for
prediction have used actual predictors or Monte Carlo
techniques. Limit studies in which the predictor can
refer to an oracle to give it perfect prediction have also

been studied. Our studies will assume perfect predic-
tion.

Data dependencies are induced by the need to pre-
serve the order of reads with respect to writes to
storage locations. After anti-dependencies and out-
put dependencies are removed by renaming, true de-
pendencies remain. These true dependencies can be
further classified as program dependencies (resulting
from data interaction in the particular algorithms em-
ployed by the application) and what we will refer to
as compiler-induced dependencies. These dependencies
are true dependencies introduced during compilation
to support the high-level language abstractions. While
they cannot be distinguished from program dependen-
cies by the processor, modification of the run-time sup-
port generated during compilation can eliminate many
of them. In this study we will examine the effects of
eliminating perhaps the most critical compiler-induced
dependency—the allocation of activation records on a
stack.

Section 2 discusses previous limit studies on ILP. In
Section 3 we present our methodology and a detailed
simulator description. We examine the effects of elimi-
nating false dependencies through renaming in Section
4 and discuss additional improvements through recog-
nition and elimination of compiler-induced dependen-
cies in Section 5. In Section 6 we discuss methods of
exploiting the parallelism exposed in this study and
in Section 7 we conclude and present several areas of
further research.

2 Previous Studies

Early studies by Tjaden and Flynn showed that 2-3 in-
structions per clock (IPC) were possible [TF70]. How-
ever, these studies did not consider the possibilities of
looking past a branch and were therefore bound by
basic block sizes, which are typically four to eight in-
structions. The importance of branches as a limit on
parallelism was more fully explored by Riseman and
Foster [REF72]. The recognition of the importance of
branch prediction as enabling parallelism lead to a sig-
nificant effort in branch prediction that continues to-
day [L.S84, YP92]. It is now possible to achieve predic-

trev
Typewritten Text
Computer Architecture News, vol. 27, no. 1, March 1999, pp. 31-34.
Condensed from Proc. 3rd Workshop on Interaction Between Compilers and Computer Architecture (INTERACT-3) at the
8th Int. Conf. Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII), Oct. 1998.

tion rates that are correct more that 95% of the time.
The possibility of high prediction rates also prompted
limit studies that considered speculative execution sce-
narios that extended beyond the basic block bound-
aries.

Many of the earlier limit studies [Wal91l, JW89,
Wal93, BYP191] also removed WAR and WAW de-
pendencies in the case of registers by modeling renam-
ing. The use of register renaming hardware in current
processors has given added relevance to these studies
[Kel75].

Work reported by Wall [Wal93] showed that there
was a potential for IPC greater than 60 if perfect pre-
diction was assumed. To achieve this limit it was also
necessary to assume that caches were perfect, that
data dependency analysis could be done essentially
instantaneously and that register renaming was sup-
ported.

Removing false memory dependencies is practically
difficult for two reasons: 1) addresses are usually com-
puted, so the task of determining whether two memory
references are aliased to the same location is difficult;
and 2) memory is large so renaming schemes like those
employed for registers would be impractical. The use
of algorithm information by the compiler can make the
problem tractable for large classes of address calcula-
tion, and thus it has made sense to assume a solution
to the aliasing problem in limit studies. Perfect alias
analysis was studied in [Wal93].

Memory renaming was considered in a limit study
in [AS92]. IPC as high as several thousand was re-
ported. Recent developments that employ relatively
small value files to rename locally live memory ad-
dresses have shown that memory renaming is not as
impractical as was thought [TA97]. Such studies have
shown promise in reducing the effect of false memory
dependencies and allowing more memory references
to execute out-of-order. We extend previous work in
memory renaming to the limit case to explore the pos-
sible gains of an unrestricted memory renaming model.

These limit studies gave an optimistic picture.
Other studies that considered the complexities of the
hardware needed to detect data dependencies be-
tween instructions, the complexities of fetching non-
contiguous instructions from memory, and gathering
multiple data items from memory in single cycles, ar-
rived at much more pessimistic results that suggested
2-3 as a realistic limit for IPC [JW89, STH89]. Never-
theless, the limit studies showed that the limitations
were one of physical implementation, not logical lim-
itations, and thus provided a realistic goal for imple-
menters.

In fact, before some of these studies there was al-
ready a significant body of research that proposed
to eliminate the implementation complexities through
compiler analysis. The VLIW work was one of the best
examples of this approach. Scheduling techniques were

developed in which branch prediction was essentially
done by the compiler so that it could assemble long
execution traces. In [NF84] IPC of tens and in some
cases hundreds are reported for benchmarks of DO-
loops style programs. Even earlier studies by Kuck’s
group at the University of Illinois showed that 16 or
more processors could be kept busy on workloads char-
acterized by FORTRAN DO-loops [KBCT74].

Furthermore, not all researchers who considered the
attenuation that results from implementation com-
plexities were as pessimistic as [JW89] and [SJH89].
In [BYP191], as the title suggests, the authors argue
a strong case for implementation complexities being
less limiting. Indeed, in the past few years manufac-
turers have now started to produce machines with the
ability to issue six instructions per cycle, with more on
the horizon [Gwe97].

This work is focused on logical limits rather than
on implementation issues (we use unlimited window
size and perfect branch prediction, for example). We
demonstrate a form of “parallelism at a distance”
which is the possibility to execute instructions which
are hundreds of thousands or millions of instructions
away from each other. A single window model of par-
allelism is not scalable to this level of parallelism.

Research on very wide processors have shown that
large instructions windows can provide significant wins
in performance [SV97]. However, no single instruction
window, no matter how large, will be able to capture
the parellelism we demonstrate in this paper—the dis-
tances between independent instructions is simply too
vast.

As mentioned earlier, branch prediction allows a ma-
chine to look further down a (potential) instruction
stream to extract parallelism. Non-perfect branch pre-
diction has the same effect as a reduced instruction
window size, restricting the machine to utilize local
parallelism exclusively. With imperfect branch predic-
tion, the instruction window will be filled with use-
less instructions instead of more distant instructions
that could be executed in parallel independent of the
branch outcome. This is especially true when multiple
branch predictions are attempted in a single cycle.

Other work has shown the potential of multiple
instruction windows to ease implementation by de-
coupling reference and computation streams [JT97].
Though the effective window size of the two separate
windows proposed in that work can exceed the sum
of their individual sizes, the two instruction streams
are very tightly coupled (by a single program counter)
compared to the separate instruction streams discov-
ered here.

This parallelism at a distance supports much pre-
vious work in multi-threaded execution [TEL95], and
provides some insight into how multiple threads may
be found from a single “sequential” program.

3 Methodology

In order to examine the available parallelism, we con-
structed an execution driven simulator based on the
the simplescalar simulation environment [BA97]. A
graphical image is generated based on information pro-
duced by the simulator. This image provides insight
into the available parallelism in the benchmarks.

3.1 Simulation

The simulator is derived from simplescalar’s sim-safe.c
(a simple functional simulator) and modified to track
the cycle in which each instruction could be issued ac-
cording to data, control and resource dependencies. In
this section, the construction of the simulator will be
discussed and the benchmark applications will be pre-
sented, with the goal that readers can easily duplicate
our results.

The primary data structures used to track data de-
pendencies in the simulator include:

1. REG[64] — a register file consisting of 32 integer
and 32 floating point registers. This structure
holds the current register data during functional
simulation.

2. MEM[4GB] — the memory system containing pro-
gram data allocated in memory. Logically, this is
treated as a 4GB array of bytes.

3. REG.DEF.CYCLE[64] — a cycle count associ-
ated with any register definition (write) indicat-
ing when that data could first be available during
execution.

4. MEM.DEF.CYCLE[4GB] - a cycle count associ-
ated with any memory definition (store) indicat-
ing when that data could first be available during
execution.

5. REG.USE.CYCLE[64] — a cycle count associated
with any register use (read) indicating when that
register was last read.

6. MEM.USE.CYCLE[4GB] — a cycle count associ-
ated with any memory use (load) indicating when
that register was last read.

The actual execution of instructions within the sim-
ulator is performed in original program order. As each
instruction is processed it is labeled with its position
in the program order (INST.NUM) and the earliest
cycle in which it can be executed is calculated (IS-
SUE.CYCLE). In the initial simulation, all data de-
pendencies are calculated as follows:

e RAW = max (REG.DEF.CYCLE(inl),
REG.DEF.CYCLE(in2),
REG.DEF.CYCLE(in3))

e WAR = max (REG.USE.CYCLE(outl),
REG.USE.CYCLE (out2))

e WAW = max (REG.DEF.CYCLE(outl),

REG.DEF.CYCLE (out2))

e if (load instruction)
MRAW = MEM.DEF.CYCLE[addr]

e if (store instruction)
MWAR = MEM.USE.CYCLE[addr]

e if (store instruction)
MWAW = MEM.DEF.CYCLE[addr]

where n1,in2 and in3 are source register operand spec-
ifiers, out! and out2 are destination operand specifiers
and addr is the effective address calculated for mem-
ory operations'. Once input dependencies have been
calculated, the earliest issue cycle can be calculated;
when no renaming is performed (and resource and con-
trol dependencies are ignored) the earliest issue cycle
is calculated as:

ISSUE.CYCLE =
max(RAW, WAR, WAW, MRAW, MWAR, MWAW)
(1)

The simulation considers system call instructions to
be serialization points but since the simulation is only
of user-level instructions, system call modifications to
machine state cannot be directly modeled. Instead,
the simulator employs an additional implicit input de-
pendency on each instruction which is the cycle num-
ber of the last system call. In effect, this assumes that
all machine state is modified at the system call and so
serializes execution.

After an instruction has been simulated, the data
dependence structures are modified to accommodate
the new register and memory references:

e REG.DEF.CYCLE[out1] ISSUE.CYCLE + 1

e REG.DEF.CYCLE[out2]

ISSUE.CYCLE + 1

e REG.USE.CYCLE[in1]

ISSUE.CYCLE

e REG.USE.CYCLE[in2] ISSUE.CYCLE

e REG.USE.CYCLE[in3]

ISSUE.CYCLE

e if (store instruction)
MEM.DEF.CYCLE [addr]

ISSUE.CYCLE + 1

e if (load instruction)
MEM.USE.CYCLE [addr]

ISSUE.CYCLE

Table 1 shows the initial IPC measurements for the
SPEC ’95 benchmark suite. Simulations were termi-
nated at completion or after 1 billion instructions for
some of the long running floating point applications.
Column 1 identifies the application, column 2 specifies
the input file(s) used, and columns 3 and 4 show the to-
tal number of instructions and memory references ex-
ecuted during simulation. Column 5 of Table 2 shows

1. The simplescalar ISA includes three source operands (for
future expansion) and some instructions may modify two desti-
nation registers (e.g. load with post-increment).

4 T T T T
Example Execution Profile +
35 - st 13 -> -4(sp)
5| +
=
£ 25+t shll 13,12 > 13
Q
15}
g2 +
=
5 15+ movrl->r2 mov$l->r3 1d 12(sp) >4 A
o+ +
0.5
0
0 1 2 3 4 5 6

Instruction Number

Figure 1: An example execution profile.

the IPC for the application when using equation (1) to
calculate ISSUE.CYCLE. The IPC is obtained from:
MaxINST.NUM

IPC = N xISSUE.CYCLE 2)

The results in Column 1 of Table 2 are consistent with
earlier studies performing no register or memory re-
naming.

3.2 The Execution Profile

In order to evaulate the performance of different con-
figurations, we rely primarily on the measure instruc-
tions per cycle (IPC). In addition, to understand what
is happening during benchmark execution, we con-
structed graphs which we call “execution profiles.”
The execution profile plots the execution time (IS-
SUE.CYCLE) on the y-axis versus the instruction’s
dynamic number (INST.NUM) on the x-axis. This
representation of the data shows when each instruc-
tion in a program is free of dependencies and can be
executed.

Figure 1 shows a very small example execution pro-
file. Each point represents the execution of a particu-
lar instruction at a particular cycle. For example, the
two mov instructions and the Id instruction at posi-
tions 1, 2, and 5 can execute in cycle 1 because they
are independent. The shll instruction depends on the
two previous instructions and therefore cannot execute
until cycle 2. In general, all the points intersecting a
horizontal slice through the graph represent instruc-
tions that are executed in parallel in the simulation,
and thus indicate parallelism that could be exploited
by an ideal processor. There is only one dot on the
graph for any given vertical slice, since each instruc-
tion has its own INST.NUM.

In the actual graphs shown in the succeeding sec-
tions, individual points cannot be discerned because
the long x- and y- axes are compressed to fit conve-
niently onto a page.

4 Effects of Renaming

In this section we examine the effect of renaming on
ILP. We repeat previous register renaming studies for
SPEC95 to provide a comparison and a validity check.
We then consider memory renaming. Table 2 shows
the summary results. In addition we include execution
profiles for our running case studies, gce and fpppp.

Table 1: Benchmark Descriptions (train inputs)

Benchmark Input Insts | Mem Refs
o) | (o
compress small.in 95.2 33.8
gee jump.i 157 63.4
go 2stone9.in 151 41.7
ijpeg vigo.ppm 1000 254
li train.lsp 183 77.8
m88ksim ctl.big 120 37.0
perl scrabbl.pl 40.5 18.5
vortex vortex.in 214 115
applu applu.in 532 136
apsi apsi.in 1000 315
fpppp natoms.in 330 175
hydro2d hydro2d.in | 1000 260
mgrid mgrid.in 1000 363
su2cor su2cor.in 1000 308
swim swim.in 797 235
tomcatv tomcatv.in | 1000 278
turb3d turb3d.in 1000 216
waved waved.in 1000 256

Figure 2 displays execution profiles for gcc and
fpppp with no renaming. This corresponds to the
gee and fpppp IPC entries in Table 1 (bold). The
IPC is shown in the upper right corners of the graphs.
The horizontal axis plots each instruction in numeri-
cal order (from 1 to 157,242,271 in the case of gcc or
329,849,256 for fpppp).

In Figure 2, a horizontal slice would intersect, on
average, 3.6 instructions for gcc or 3.3 for fpppp. In
addition, the gcc profile contains shading to the right
of the main cluster. This indicates that even without
renaming, instructions that are far apart in program
order (on the order of millions) can in fact be executed
simultaneously. The fpppp graph exhibits a horizontal
line at cycle zero extending through the entire execu-
tion. All of these instructions are executed early in
the program run because they have no dependencies.
These instructions include unconditional jumps, nops
and instructions that write to registers the first time
(so that output dependencies are not a factor).

In the next section we explore the effect of regis-
ter renaming on the execution profiles of our example
benchmarks.

45 cot IPC = 3.6071

Cycle Executed (Millions)

0 50 100 150
Instruction Number (Millions)

(a) gec

100 foppp IPC = 3.3346 |]

80 B

60 [B

40 F —

Cycle Executed (Millions)

20 [B

L L L L L L
0 50 100 250 300

150 200
Instruction Number (Millions)

(b) fpppp

Figure 2: Execution Profiles without Renaming. Note the y-axis scales.

4.1 Register Renaming

As noted earlier, register renaming is used to elimi-
nate WAR and WAW dependencies. Accordingly, we
calculate the issue cycle for an instruction as:

ISSUE.CYCLE =

max(RAW, 0,0, MRAW, MWAR, MWAW) ®)
Register renaming eliminates WAR and WAW depen-
dencies, so these are zeroed in the equation.

Figure 3 shows the execution profiles of gcc and
fpppp when register renaming is enabled. Note that
the y-axis scale is significantly reduced, indicating a
substantial increase in performance. For gcc, the IPC
improves by an order of magnitude, and fpppp shows
an even greater improvement. There are many more
horizontal lines in the graphs, indicating a great deal
of parallelism is available. Most of this parallelism ap-
pears over great distances.

The third column of our summary table (Table 2 at
the end of the paper) presents the IPC figures for our
benchmarks when register renaming is applied. Reg-
ister renaming results in a substantial increase in po-
tential IPC.

Register renaming works because false dependencies
often determine the execution time of an instruction.
This is apparent in Figure 4, where a breakdown of
the limiting dependencies is presented. For each type
of dependency, the simulator tracks how many times
that particular dependency type determined the exe-
cution time of the instruction, i.e. how many times
it was the maximum value in equation (1). WAR
and WAW dependencies through registers account for
approximately 55%-60% of the limiting dependencies.
Register renaming eliminates these dependencies.

Register renaming also uncovers another class of
false dependencies: those through the memory system.

100%

EBMWAW
MWAR

B MRAW

BWAW

OWAR

B RAW

80%

Breakdown by Dependency Type

20%

0%

applu
apsi

cct
foppp
m88ksim
mgrid
perl
su2cor
swim
tomcatv
turb3d
vortex
waves

compresss

Benchmark

Figure 4: Dependency Breakdown by Type.

Although these dependencies seem small in Figure 4,
they often have much larger penalties associated with
them and their removal can significantly improve IPC.
We discuss this in the following section.

4.2 Memory Renaming

While register renaming is effective for removing false
dependencies in a limited range, it does not remove
such dependencies when they occur through memory.
Memory dependencies are much more difficult to de-
tect and eliminate because of the resource needs of any
detection mechanism and the aliasing problem of de-
termining whether two computed addresses reference
the same memory location.

For this experiment we eliminate MWAR and
MWAW dependencies, in addition to register renam-

ccl reés renamed IPC = 39.7865 ~

Cycle Executed (Millions)

150

100
Instruction Number (Millions)
(a) gee

Figure 3: Execution Profiles with Register Renaming
smaller than in the corresponding graphs of Figure 2.

ing. Our issue cycle calculation now becomes:
ISSUE.CYCLE = max(RAW, 0,0, MRAW,0,0) (4)

Only true dependencies are considered when calculat-
ing the issue cycle of an instruction.

Figure 5 presents the execution profiles of gcc and
fpppp when register and memory renaming are en-
abled. The y-axis scale for gcc has not changed, in-
dicating that gcc is not limited by false dependencies
through memory. On the other hand, fpppp execution
time has improved by almost another order of mag-
nitude. In addition, many of the interior points have
been collapsed to lower cycles, often to cycle zero.

The fourth column of Table 2 presents the IPC fig-
ures for our benchmarks when register and memory
renaming are applied. The improvement in IPC is
highly benchmark dependent. As shown by Figure
4, memory-carried dependencies are a small percent-
age of those dependencies that determine execution
time. However, in those benchmarks where the penalty
for memory-carried false dependencies is large, signif-
icant improvement in IPC can be observed when the
false dependencies are removed. In particular, applu is
quite limited by false memory dependencies. Remov-
ing this limit results in an order of magnitude increase
in IPC. Other benchmarks, such as gcc and go, are not
limited by false memory dependencies.

Memory renaming can be beneficial when areas of
memory are re-used often. A common source of false
dependencies through memory is the use of a runtime
stack for function linkage. The same memory area is
continually re-used as the stack pointer is moved and
activation records are pushed and popped. This use
of a stack is an artifact of the compilation model; it is
one possible method used to abstract the concept of a
function and private local variables.

Cycle Executed (Millions)

fpppp r‘egs renamed IP‘C =103.6227 j

0 50 100 250 300

150 200
Instruction Number (Millions)

(b) fpppp

. Notice that the y-axis scales are an order of magnitude

5 Compiler Interactions

After eliminating all false data dependencies (along
with all resource and control dependencies), it is rea-
sonable to assume that a basic limit in the parallelism
inherent in a program has been achieved. This is true
from the perspective of the processor, which sees only
the binary representation of the program. However,
this low-level representation is generated by a com-
piler from a more abstract high-level language. Dur-
ing translation, the compiler not only translates the
original data dependencies of the application, but in-
cludes additional instructions supporting language ab-
stractions (e.g. functions). These additional instruc-
tions create their own data dependencies which can,
in themselves, limit the parallelism in aggressive ma-
chines.

Chief among the compiler generated dependence
chains is the stack pointer register used to allocation
function activation records. The use of a stack pointer
is very efficient in allocating the memory space for
functions (local variables, parameters, etc.); it takes
only a single instruction to allocate a function acti-
vation record of arbitrary size? and a second instruc-
tion to deallocate that space upon completion of the
function call. While this is efficient in terms of space
and instructions required to allocate space, aggressive,
multi-issue architectures are less constrained by the
number of instructions required to perform a task than
by the lengths of the dependence chains connecting
the instructions. The use of a stack pointer generates
a very long true dependence chain as the stack regis-
ter is continually modified — twice for each function
allocating space for an activation record.

Note that the stack has two separate effects on ex-

2. SP = SP - size_activation_record

cc1 regs renamed me‘m renamed IPC = 41.6342

Cycle Executed (Millions)

100 150
Instruction Number (Millions)

(a) gec

fpppp régs renamed mém renamed IP‘C =774.1305 j

Cycle Executed (Millions)

250 300

150 00
Instruction Number (Millions)

(b) fpppp

Figure 5: Execution Profiles with Register and Memory Renaming. Notice again the change in y-axis scales.

ploitable ILP. The first, false dependencies through re-
use of stack space, is solved with memory renaming
as explained in Section 4.1. This section deals with
the second, namely the artificial true dependence chain
generated by the compiler to decrement and increment
the stack pointer for each function.

Figure 6 plots the same execution profile shown
in Figure 5 with only those instruction that up-
date the stack pointer register displayed. Almost
all of these instruction are of the form (SP = SP -
size_activation_record) ; however, in gcc the stack
pointer is also modified by dynamically allocating a
variable amount space on the stack with the alloca()
function. Comparing the IPC values in Figures 5 and
6 shows that even if every real program dependency
was eliminated, leaving only the compiler-induced de-
pendencies, the execution time is almost unchanged.

In Figure 7, the execution profiles for gcc and fpppp
are again plotted; this time in addition to the elimi-
nation of anti-dependencies and output dependencies
to both the register file and memory, true dependen-
cies updating the stack pointer register (R29 in sim-
plescalar binaries) are removed®. Table 2 shows that
for many applications there is a significant increase
in the number of instructions executed each cycle —
nearly an order of magnitude (or more) for half of the
applications. The parallelism uncovered by removing
the stack pointer is far beyond that uncovered by per-
fect prediction and renaming. Our method of remov-
ing stack dependencies is overly optimistic (it does not
account for any additional overhead in managing the
heap, for instance, nor for recursion). Still, it is a
limit which indicates that the compiler-induced stack
dependency is significant.

Table 2 summarizes the IPC values found in each
of the infinite instruction window configurations. The
final column shows the effect of limiting the instruc-

tion window (to 10,000) in the least constrained model
(both register and memory renaming with all stack
register dependencies removed). With a limited in-
struction window, the IPC of most applications is lim-
ited to a value approximately equal the register renam-
ing only model. This impossibly-large (single) window
cannot, take advantage of the parallelism exposed by
memory renaming and elimination of stack dependen-
cies — independent instructions are simply too distant
for even an unrealistically large instruction window to
capture. This is the so-called “parallelism at a dis-
tance”.

6 Methods for Extracting Dis-
tant Parallelism

In the previous sections, we have shown that the avail-
able parallelism in the SPEC benchmarks is consider-
ably higher than previous limit studies and orders of
magnitude better than can be achieved with current
technology. In this section, we will discuss what ca-
pabilities some future processor must have in order
to exploit the very distant parallelism which we have
demonstrated.

Current, processor designs exploit instruction level
parallelism across a narrow window of program execu-
tion; these systems have no ability to identify very dis-
tant independent instructions. What design changes
must occur to enable this parallelism at a distance to
be exploited? One option is to compile to a multi-
threaded representation. This would enable a con-
ventional multi-processor to exploit parallelism, but
places significant burden on the compiler to identify
independent threads. The analysis in sections 4 and

3. This is performed by maintaining REG.DEF.CYCLE[29] at
Zero.

cc1 regs renamed me‘m renamed IPC = 41.6342

Cycle Executed (Millions)

100
Instruction Number (Millions)

(a) gec

fpppp régs renamed mém renamed IP‘C =774.1305 j

Cycle Executed (Millions)

Figure 6: Stack Register Dependency Execution Profiles.

ccl régs renamed mem renamed r2§ removed IPC = 239.9620

Cycle Executed (Millions)

0 50 100 150
Instruction Number (Millions)

(a) gec

[50 150 00 250 300
Instruction Number (Millions)
(b) fpppp
T T T T T T

0.18 | fpppp regs renamed mem renamed r29 removed IPC = 1837.9587 4

0.16 q

0.14 q
® o012 4
S
S o1} 4
°
2
3
3
e 008 [4
i
©
S 006 B
3 o

0.04 | o]

RS -
002 | - e i
L
0
1 1 1 1 1 1
[50 250 300

150 00
Instruction Number (Millions)

(b) fpppp

Figure 7: Execution Profiles with Stack Pointer Removed. The y-axis scales have dropped by another order of

magnitude.

5 show that threads do exist, but offers little help in
identifying them statically. Furthermore, the compiler
rarely has complete knowledge of data dependencies
(especially through the memory system) so it is impos-
sible to make a static guarantee of the independence
of threads.

For some functions it may be relatively easy to gen-
erate threads — the C printf routine, for instance,
is a long function with no significant side effects. It
is very likely that the code immediately following the
call to printf can be executed independently of the
printf call (unless the return value is used), but no
single-window machine would be able to do so since
the printf call may require execution of tens of thou-
sands of instructions. The widespread use of library
routines makes them natural candidates for this type
of thread creation since they are quite easy to analyze.

Executing threads at this granularity necessitates a
very lightweight thread creation and dispatch mech-
anism. One aspect of this mechanism is to allocate
space for the activation record of a thread or func-
tion. Stack allocation of activation records is a com-
mon technique to support local frame allocation, but
other options are possible. Many early languages (e.g.
early versions of Fortran) used fixed allocation of func-
tion variables, while some current languages are im-
plemented using heap allocated activation records to
support multi-threaded execution models. The best
known example is Sun’s implementation of the Java
virtual machine [LY97]. While a fixed frame is not
reentrant, heap allocation is a viable alternative to
stack based activation records — trading higher over-
head (in instructions required to allocate space) with
the ability to perform allocations in parallel.

Table 2: Benchmark IPC for All Configurations

Benchmark IPC IPC IPC IPC IPC
No Register Memory r29 10K
Renaming | Renaming | Renaming | Removed | Window

compress95 3.12 26.25 73.88 226.33 18.89
ccl 3.61 39.79 41.63 239.96 86.45
go 2.50 49.15 53.77 141.46 70.71
ijpeg 2.41 55.47 93.60 94.11 52.94
li 3.56 19.60 19.61 81.45 27.70
m88ksim 2.76 19.93 62.06 363.26 20.50
perl 3.47 82.01 127.57 153.05 128.84
vortex 4.57 26.26 26.27 271.97 92.04
applu 2.82 106.65 2037.61 2076.06 78.67
apsi 3.6 54.89 183.44 1224.86 79.56
fpppp 3.33 103.62 774.13 1837.96 134.62
hydro2d 3.09 144.80 147.67 242.08 52.14
mgrid 3.34 1876.11 3933.03 4003.44 286.48
su2cor 3.22 38.21 34.81 55.56 47.60
swim 3.10 112.08 112.08 275.21 89.15
tomcatv 3.61 32.85 61.47 119.67 58.91
turb3d 3.42 370.98 482.24 3652.46 0
waveb 3.25 29.28 35.71 35.71 0

It may be possible to achieve the effects of heap-
based allocation of activation records without aban-
doning the efficiency of stack-based allocation by de-
termining the maximum stack depth a procedure call
may require. Often the call depth is known at com-
pile time. This information can be used to reserve
the required maximum amount of stack space before
initiating the call. Code following the call can be exe-
cuted immediately (assuming no other dependencies).
In effect, the single runtime stack is partitioned into
multiple stacks used by independent procedure invoca-
tions. This can also be generalized to a multiple stack
implementation if the machine ISA has appropriate
support.

7 Conclusions

The limit studies reported here show that a marked
increase in exploitable parallelism can be seen by suc-
cessive addition of register renaming, memory renam-
ing, and removal of the compiler-induced dependency
on the stack pointer.

This work supports previous studies of register re-
naming as a solution for false register dependencies.
We extended the limit study to include memory re-
naming. In previous studies it was thought that mem-
ory renaming was infeasible. However, recent work
has proposed a feasible, though limited, version of
memory renaming. By extending our study to include
memory renaming we exposed the constraints placed

on parallelism by the linear nature of the stack allo-
cation of activation records. Therefore we removed
the decrement/increment dependency chain responsi-
ble for frame allocation. We discussed several possible
mechanisms to do this. These techniques together ex-
pose much greater parallelism than has been seen in
previous studies.

These results provide new evidence that there is
significant parallelism in applications which are tra-
ditionally thought to be sequential. However, the par-
allelism cannot be exploited by a traditional out-of-
order superscalar microarchitecture because the dis-
tance between parallel instructions is too great for
even a highly aggressive implementation to discover
them. Therefore a processor that executes from mul-
tiple instruction streams will be required to uncover
this parallelism. While it is clearly a difficult task to
identify this distant parallelism, we feel that a hybrid
approach exploiting some local parallelism along with
a portion of the more distant parallelism is the only
chance to dramatically increase the overall parallel ex-
ecution within a single application.

Furthermore, compiler support will be required to
eliminate the false dependencies introduced by the
stack model used in the calling conventions of lan-
guages such as C and C++. Compiling for threads
and heap allocation of activiation records seem to be
the most obvious starting points.

Future work that eliminates the stack and other
compiler-induced dependencies may open up better

ways of performing inter-procedural analysis for par-
allelism. In addition, architectural changes that allow
relaxation of compiler guarantees will allow a com-
piler without complete knowledge of program behavior
to make “unsafe” assumptions that are valid through
most or all of the program execution.

8 Acknowledgments

This work was supported by DARPA contract
DABT63-97-C-0047. The simulation facility was pro-
vided through an Intel Technology for Education 2000
grant.

References

T. M. Austin and G. S. Sohi. Dynamic
dependency analysis of ordinary programs.
In David Abramson and Jean-Luc Gau-
diot, editors, Proc. ISCA-19, pages 342—
351. ACM Press, May 1992.

[AS92]

[BA9T] Douglas C. Burger and Todd M. Austin.
The simplescalar tool set, version 2.0.
Tech. Report CS-TR-97-1342, University

of Wisconsin, Madison, June 1997.

[BYPT91] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup,
H. Scales, and M. Shebanow. Single in-
struction stream parallelism is greater than
two. In Proc. ISCA-18, volume 19, pages
276-286, June 1991.

[Gwe97] Linley Gwennap. Design concepts for
merced. Microprocessor Report, 11(3):9—-

11, March 1997.

[JT97] G. P. Jones and N. P. Topham. A compar-
ison of data prefetching on an access de-
coupled and superscalar machine. In Proc.

Micro-30, pages 65—70, December 1997.

[JW89] N. P. Jouppi and D. W. Wall. Avail-
able instruction-level parallelism for super-
scalar and superpipelined machines. In
Proc. ASPLOS-3, volume 24, pages 272—

282, May 1989.

[KBC*74] D. Kuck, P. Budnik, S. C. Chen, E. Davis,
Jr., J. Han, P. Kraska, D. Lawrie, Y. Mu-
raoka, R. Strebendt, and R. Towle. Mea-
surements of parallelism in ordinary FOR-
TRAN programs. Computer, 7(1):37-46,
January 1974.

[Kel75] Robert M. Keller. Look-ahead proces-
sors. ACM Computing Surveys, 7(4):177—

195, December 1975.

[LS84]

[LY97]

[NF84]

[RF72]

[STHSO]

[SV97]

[TA97]

[TEL95)

[TF70]

[Wal91]

[Wal93]

[YP92]

J. K. F. Lee and A. J. Smith. Branch pre-
diction strategies and branch target buffer
design. Computer, 17(1):6-22, January
1984.

Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison-
Wesley, Reading, MA, 1997.

A. Nicolau and J. A. Fisher. Measuring the
parallelism available for very long instruc-
tion word architectures. In IEEE Trans.
Computers, volume C-33, pages 968-976.
1984.

E. M. Riseman and C. C. Foster. The in-
hibition of potential parallelism by condi-
tional jumps. In IEEE Trans. Computers,
volume C-21, pages 1405-1411. 1972.

M. D. Smith, M. Johnson, and M. A.
Horowitz. Limits on multiple instruction is-
sue. In Proc. ASPLOS-3, number 5, pages
290-302, May 1989.

James E. Smith and Sriram Vajapeyam.
Trace processors: Moving to fourth-
generation microarchitectures. Computer,
30(9):68-74, September 1997.

Gary S. Tyson and Todd M. Austin. Im-
proving the accuracy and performance of
memory communication through renam-
ing. In Proc. Micro-30, pages 218-227, De-
cember 1997.

Dean M. Tullsen, Susan J. Eggers, and
Henry M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In
Proc. ISCA-22, pages 392-403, June 1995.

G. S. Tjaden and M. J. Flynn. Detec-
tion and parallel execution of indepen-
dent instructions. Journal of the ACM,
19(10):889-895, October 1970.

D. W. Wall. Limits of instruction-level par-
allelism. In Proc. ASPLOS-4, volume 26,
pages 176-189, April 1991.

David W. Wall. Limits of instruction-
level parallelism. Technical Report DEC-
WRIL-93-6, Digital Equipment Corpora-
tion, Western Research Lab, November 93.

T.-Y. Yeh and Y. N. Patt. Alterna-
tive implementations of two-level adaptive
branch prediction. In David Abramson and
Jean-Luc Gaudiot, editors, Proc. ISCA-19,
pages 124-135, May 1992.

